Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yan-Wu Li, ${ }^{a}$ Hua Xiang, ${ }^{a}$

Tong-Bu Lu ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *
${ }^{\text {a }}$ Instrument Analysis and Research Center, Sun Yat-Sen University, Guangzhou 510275,
People's Republic of China, and ${ }^{\text {b }}$ Department of
Chemistry, University of Malaya, 50603 Kuala
Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.030$
$w R$ factor $=0.081$
Data-to-parameter ratio $=17.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[(3,10-diethyl-1,3,5,8,10,12-hexaazacyclotetradecane)nickel(II)]-μ-terephthalato]

In the title complex, $\left[\mathrm{Ni}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{~N}_{6}\right)\right]_{n}$, the 14membered hexaazacyclotetradecane macrocycle ring chelates to the Ni atom through its four secondary N atoms; the Ni atom and the terephthalate anion lie on inversion centers. The terephthalate dianion links adjacent nickel-macrocycle cations through the carboxyl O atoms [$\mathrm{Ni}-\mathrm{O} 2.144$ (2) A] into a linear chain.

Comment

Among the nickel complexes of the 14 -membered hexaazacyclotetradecane macrocycle, the carboxylate derivatives are capable of forming strong $\mathrm{Ni}-\mathrm{O}$ (carboxylate) bonds (Li et al., 2004). The terephthalate dianon has also been used to bind to Ni in the macrocyclic complex having the $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ pendent arm. In the title complex, (I), the two carboxyl $-\mathrm{CO}_{2}$ groups are twisted with respect to the aromatic ring so as to bond to the Ni atom, but the twist apparently weakens the $\mathrm{Ni}-\mathrm{O}$ bond $[2.129(5) \AA$] somewhat [dihedral angles $=$ 12.01 (1) and $\left.17.9(1)^{\circ}\right]$ (Choi \& Suh, 1999). The complex is a rare example of the use of a macrocycle-metal entity in the construction of network structures.

The Ni atom and the terephthalate anion lie on inversion centers. The title compound (Fig. 1) adopts a linear chain structure and the chains are all parallel (Fig. 2). This motif contrasts with that of the $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ analog, in which the chains in one layer run approximately perpendicular to the those of the next layer to furnish a plywood-like network arrangement.

Experimental

The title compound was synthesized from ethylamine ($6.8 \mathrm{~g}, 0.15 \mathrm{~g}$) and the sodium salt of terephthalic acid according to the method of Suh et al. (1994). CHN analysis for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{NiO}_{4}$ found: C 49.96, H 7.39, N 17.26\%; calculated: C 49.91, H 7.12, N 17.47%.

Received 13 January 2004 Accepted 30 January 2004 Online 20 February 2004

Nickel complexes of 1,8-diorganyl-1,3,6,8,10,13hexaazacyclotetradecane. Part IV.

Figure 1
ORTEPIII (Burnett \& Johnson, 1996) plot of a fragment of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Hydrogen bonds are shown dashed. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $2-x, 1-y, 2-z$.]

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{~N}_{6}\right)\right]$	$Z=1$
$M_{r}=481.24$	$D_{x}=1.421 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=7.5818(5) \AA$	Cell parameters from 2995
$b=8.3976(5) \AA$	reflections
$c=9.7596(6) \AA$	$\theta=4.0-30.0^{\circ}$
$\alpha=105.506(1)^{\circ}$	$\mu=0.90 \mathrm{~mm}^{-1}$
$\beta=97.283(1)^{\circ}$	$T=298(2) \mathrm{K}$
$\gamma=105.853(1)^{\circ}$	Plate, yellow
$V=562.45(6) \AA^{3}$	$0.27 \times 0.23 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART 1K area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.792, T_{\text {max }}=0.931$
3389 measured reflections
2500 independent reflections
2397 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.010$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-7 \rightarrow 10$

Refinement
Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0496 P)^{2}\right. \\
&+0.1456 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.42 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
ORTEPIII (Burnett \& Johnson, 1996) plot of the polymeric chains in the structure of (I).

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$	0.91	2.03	$2.878(2)$	154

The nitrogen- and carbon-bound H atoms were placed at calculated positions and were refined in the riding-model approximation $(\mathrm{N}-\mathrm{H}=0.91 \AA$, methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$ and phenyl $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$), with $U(\mathrm{H})=1.2 U_{\text {eq }}$ of the parent atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (No. 20371051), the Ministry of Education of China and the University of Malaya for supporting this work.

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Choi, H. J. \& Suh, M. P. (1999). Inorg. Chem. 38, 6309-6312.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Li, Y.-B., Xiang, H., Lu, T.-B. \& Ng, S. W. (2004). Acta Cryst. E60, m309-m311. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Suh, M. P., Shim, B. Y. \& Yoon, T.-S. (1994). Inorg. Chem. 33, 5509-5514.

