Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Yan-Wu Li,<sup>a</sup> Hua Xiang,<sup>a</sup> Tong-Bu Lu<sup>a</sup> and Seik Weng Ng<sup>b</sup>\*

<sup>a</sup>Instrument Analysis and Research Center, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

#### Key indicators

Single-crystal X-ray study T = 298 K Mean  $\sigma$ (C–C) = 0.003 Å R factor = 0.030 wR factor = 0.081 Data-to-parameter ratio = 17.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# catena-Poly[[(3,10-diethyl-1,3,5,8,10,12-

hexaazacyclotetradecane)nickel(II)]*µ*-terephthalato]

In the title complex,  $[Ni(C_8H_4O_4)(C_{12}H_{30}N_6)]_n$ , the 14membered hexaazacyclotetradecane macrocycle ring chelates to the Ni atom through its four secondary N atoms; the Ni atom and the terephthalate anion lie on inversion centers. The terephthalate dianion links adjacent nickel-macrocycle cations through the carboxyl O atoms [Ni-O 2.144 (2) Å]into a linear chain. Received 13 January 2004 Accepted 30 January 2004 Online 20 February 2004

Nickel complexes of 1,8diorganyl-1,3,6,8,10,13hexaazacyclotetradecane. Part IV.

# Comment

Among the nickel complexes of the 14-membered hexaazacyclotetradecane macrocycle, the carboxylate derivatives are capable of forming strong Ni-O(carboxylate) bonds (Li *et al.*, 2004). The terephthalate dianon has also been used to bind to Ni in the macrocyclic complex having the  $-CH_2CH_2OH$ pendent arm. In the title complex, (I), the two carboxyl  $-CO_2$ groups are twisted with respect to the aromatic ring so as to bond to the Ni atom, but the twist apparently weakens the Ni-O bond [2.129 (5) Å] somewhat [dihedral angles = 12.01 (1) and 17.9 (1)°] (Choi & Suh, 1999). The complex is a rare example of the use of a macrocycle-metal entity in the construction of network structures.

The Ni atom and the terephthalate anion lie on inversion centers. The title compound (Fig. 1) adopts a linear chain structure and the chains are all parallel (Fig. 2). This motif contrasts with that of the  $-CH_2CH_2OH$  analog, in which the chains in one layer run approximately perpendicular to the those of the next layer to furnish a plywood-like network arrangement.

Experimental

The title compound was synthesized from ethylamine (6.8 g, 0.15 g) and the sodium salt of terephthalic acid according to the method of Suh *et al.* (1994). CHN analysis for  $C_{20}H_{34}N_6NiO_4$  found: C 49.96, H 7.39, N 17.26%; calculated: C 49.91, H 7.12, N 17.47%.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved





**ORTEPIII** (Burnett & Johnson, 1996) plot of a fragment of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Hydrogen bonds are shown dashed. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 2 - z.]

Crystal data

| $[Ni(C_8H_4O_4)(C_{12}H_{30}N_6)]$ | Z = 1                                     |
|------------------------------------|-------------------------------------------|
| $M_r = 481.24$                     | $D_x = 1.421 \text{ Mg m}^{-3}$           |
| Triclinic, P1                      | Mo $K\alpha$ radiation                    |
| a = 7.5818 (5)  Å                  | Cell parameters from 2995                 |
| b = 8.3976(5) Å                    | reflections                               |
| c = 9.7596 (6) Å                   | $\theta = 4.0-30.0^{\circ}$               |
| $\alpha = 105.506 \ (1)^{\circ}$   | $\mu = 0.90 \text{ mm}^{-1}$              |
| $\beta = 97.283 \ (1)^{\circ}$     | T = 298 (2)  K                            |
| $\gamma = 105.853 (1)^{\circ}$     | Plate, yellow                             |
| V = 562.45 (6) Å <sup>3</sup>      | $0.27 \times 0.23 \times 0.08 \text{ mm}$ |

2500 independent reflections

2397 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.010$ 

 $\theta_{\rm max} = 27.5^{\circ}$ 

 $\begin{array}{l} h = -9 \rightarrow 9 \\ k = -7 \rightarrow 10 \end{array}$ 

 $l = -12 \rightarrow 12$ 

#### Data collection

| Bruker SMART 1K area-detector          |
|----------------------------------------|
| diffractometer                         |
| $\varphi$ and $\omega$ scans           |
| Absorption correction: multi-scan      |
| (SADABS; Sheldrick, 1996)              |
| $T_{\min} = 0.792, \ T_{\max} = 0.931$ |
| 3389 measured reflections              |

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.0496P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.030$ | + 0.1456P]                                                 |
| $wR(F^2) = 0.081$               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.05                        | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 2500 reflections                | $\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$  |
| 143 parameters                  | $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$ |
| H-atom parameters constrained   |                                                            |

## Table 1

| Selected | geometric | parameters | (Å, | °). |
|----------|-----------|------------|-----|-----|
|----------|-----------|------------|-----|-----|

| Ni1-N3                  | 2 0574 (13) | Ni1 - O1                | 2 1440 (11) |
|-------------------------|-------------|-------------------------|-------------|
| Ni1-N1                  | 2.0617 (14) |                         | 2.1110 (11) |
| N3-Ni1-N1               | 94.25 (6)   | N3 <sup>i</sup> -Ni1-O1 | 87.73 (5)   |
| N3 <sup>i</sup> -Ni1-N1 | 85.75 (6)   | N1-Ni1-O1               | 88.64 (6)   |
| N3-Ni1-O1               | 92.27 (5)   | N1 <sup>i</sup> -Ni1-O1 | 91.36 (6)   |

Symmetry code: (i) 1 - x, 1 - y, 1 - z.





ORTEPIII (Burnett & Johnson, 1996) plot of the polymeric chains in the structure of (I).

# Table 2

Hydrogen-bonding geometry (Å, °).

| $D - H \cdots A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|------------------|------|-------------------------|--------------|------------------|
| N3-H3···O2       | 0.91 | 2.03                    | 2.878 (2)    | 154              |
|                  |      |                         |              |                  |

The nitrogen- and carbon-bound H atoms were placed at calculated positions and were refined in the riding-model approximation (N-H = 0.91 Å, methylene C-H = 0.97 Å and phenyl C-H = 0.93 Å), with  $U(H) = 1.2U_{eq}$  of the parent atoms.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*III (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

The authors thank the National Science Foundation of China (No. 20371051), the Ministry of Education of China and the University of Malaya for supporting this work.

### References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Choi, H. J. & Suh, M. P. (1999). Inorg. Chem. 38, 6309-6312.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Li, Y.-B., Xiang, H., Lu, T.-B. & Ng, S. W. (2004). Acta Cryst. E60, m309-m311.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Suh, M. P., Shim, B. Y. & Yoon, T.-S. (1994). Inorg. Chem. 33, 5509-5514.